References
Badura, D. (1983), Makroskopowy model ruchu na ciągu ulic i skrzyżowań, Sympozjum nt. Transport pasażerski – energetyczne aspekty transportu zbiorowego w konurbacji Górnośląskiej, Katowice.
Badura D., Wrona W. (1986), Symulacja ruchu drogowego w systemie wieloprocesorowym przy zastosowaniu modelu opartego na sieci Petriego, Zeszyty Naukowe Politechniki Sląskiej, 5: 27-46.
Barcelos de Oliveira, L., Camponogara, E. (2010), Multi-agent model predictive control of signaling split in urban traffic networks, Elsevier Transportation Research Part C: Emerging Technologies, 18(1): 120-139.
Brilon, W., Wu, N. (1998), Evaluation of cellular automata for traffic flow simulation on freeways and urban streets, Tagungsband zum Ergebnis-Workshop: Verkehr und Mobität, (pp. 111-117), Aachen: Rheinisch-Westfälische Technische Hochschule Aachen.
David, R., Alla, H. (2001), On hybrid Petri nets, Discrete Event Dynamic Systems: Theory and Applications, 11: 9-40.
Di Febbraro, A, Giglio, D., Sacco, N. (2004), Urban traffic control structure based on hybrid Petri nets, IEEE Transactions on Intelligent Transportation Systems, 5(4): 224-237.
Di Febbraro, A., Giglio, D., Sacco, N. (2001), Modular representation of urban traffic systems based on hybrid Petri nets, Intelligent Transportation Systems Proceedings: 866-871.
Dotoli, M., Pia Fanti, M. (2006), An urban traffic network model via coloured timed Petri nets, Control Engineering Practice, 14(10): 1213-1229.
Gerlough, D.L. (1955), Simulation of freeway traffic on a general-purpose discrete variable computer, Los Angeles: University of California.
Hongbin Yin, Wong, S.C., Jianmin, Xu, Wong, C.K. (2002), Urban traffic flow prediction using a fuzzy-neural approach, Transportation Research Part C: Emerging Technologies, 10(2): 85-98.
Ledoux, C. (1997), An urban traffic flow model integrating neural networks, Transportation Research Part C: Emerging Technologies, 5(5): 287-300.
Lippi, M., Bertini, M., Frasconi, P. (2010), Collective traffic forecasting, in: J.L. Balcázar, F. Bonchi, A. Gionis, M. Sebag (Eds.), Machine learning and knowledge discovery in databases. ECML PKDD 2010. Lecture Notes in Computer Science, vol. 6322 (pp. 259-273), Berlin- Heidelberg: Springer.
Murata, T. (1989), Petri nets: Properties, analysis, and applications, Proceedings of the IEEE, 77: 541-580.
Nagui, M. R., Byungkyu, B.P., Sacks, J. (2000), Direct signal timing optimization: Strategy development and results, CitySeer’10M, paper presented at the XI Pan American Conference in Traffic and Transportation Engineering, Gramado, Brazil, May 2000, pp. 1-13.
Payne, H.J. (1971), Models of freeway traffic and control, in: G.A. Bekey (Ed.), Mathematical models of public systems, Simulation Council, 1: 51-61.
Su, Haowei, Yu, Shu (2007), Hybrid GA based online support vector machine model for short-term traffic flow forecasting, in: Xu Ming, Zhan Yinwei, Cao Jiannong, Liu Yijun, (Eds.), Advanced Parallel Processing Technologies (pp. 743-752), Berlin- Heidelberg: Springer.
Shu, L., Yugeng, X. (2008), An efficient model for urban traffic network control, Proceedings of the 17th World Congress, The International Federation of Automatic Control, Seoul, Korea, 6-11 July: 743-752.
Xiaolei, Ma, Zhuang, Dai, Zhengbing, He, Jihui, Ma, Yong Wang, Yunpeng, Wang (2017), Learning traffic as images:
A deep convolutional neural network for large-scale transportation network speed prediction, Sensors, 17: 818.
Yanjie, D., Yisheng L., Wenwen, K., Yifei, Z. (2014), A deep learning based approach for traffic data imputation, paper presented at the IEEE 17th International Conference on Intelligent Transportation Systems (ITSC), Qingdao, China, 8-11 October.